

A Model-driven Sensor Web 586 / Stephen Talabac

Science Instruments & Missions - Today

- "Stovepiped" measurements and mission ops concepts by single, independent science instruments□ and platforms
- No real time information sharing between instruments & platforms
- Interspacecraft communications a "bent pipe" for command uplinks
 & science data downlinks

- With few exceptions, lacking in dynamic, reactive, and selectable, sensor measurement modes
- Lack of (near) real-time, interoperable planning & scheduling systems to facilitate opportunistic science and discovery

Sensor Webs - Tomorrow

"The best way to be ready for the future is to invent it."

John Sculley – CEO, Apple Computer

A sensor web is a coherent set of distributed "nodes", interconnected by a communications fabric, that collectively behave as a single, dynamically adaptive, observing system.

Sensor Webs: Adaptive Measurement Systems "Life was simple before World War II. After that, we had systems."

Storage

Nodes

Rear Admiral Grace Murray Hopper

Computin **Nodes**

Sensor Webs: Dynamic Node Interactions "Nothing endures but change. There is nothing permanent except

change. All is flux, nothing stays still." Heraclitus

<u> </u>		
Autonomous Node Interactions		
Action	By	
Perform multi-sensor data fusion	Synthesizing complementary sensor measurements	
Identify signals and extract features, patterns,	Performing signal processing and signature detection, sensor correlation, image processing,	
Modify science goals, re-plan observations, schedule new, targeted measurements	Establishing new goal priorities, exchanging sensor availability and operating state messages; identifying available sensor measurement services;	

then...

1		
	11	

Reconfigure Nodes & Perform New Measurements	
Reconfiguration	Examples
Temporal	Change sensor measurement frequency
Spatial	Deploy sensor to new location; change resolution, FOV, viewing geometry,
Spectral	Select only phenomenon-unique sensor bands
Assimilation & Models	Generate new initial conditions; invoke Mesoscale model; change model grid size, shape;
Organizational	Reform sensor clusters; form new node relationships, modify command and control hierarchy,
Hardware & software	Reconfigure programmable electronics; load and execute event specific algorithms,

Sensor Web Observing Systems Representative Science and Applications Benefits

- Intelligent data collection
 ...maximize useful science return by improved utilization of instruments and platforms
- Event-driven observations

 ...improve reaction time to observe rapidly evolving, transient, or variable events and phenomena

Model-driven observations

... improve predictive skill and reduce forecast model error growth by using model outputs to initiate new, *targeted* sensor measurements

Background FY04 Sensor Web IRAD

- Problem: (April 2003; Sensor Web Microworkshop, Mark Schoeberl)
 - It is <u>undesirable</u> for Aura's TES instrument, a pointable IR interferometer, to make measurements in cloud contaminated fields of view.

Solution:

- Use Aqua/MODIS data to generate cloud mask and identify cloud-free targets within TES FOV <u>in real time</u>.
- Prototype system to demonstrate how dynamic measurement techniques can maximize useful science return.

Event-driven targeted observations

- Benefit:
 - Improved utilization of sensors, science instruments and platforms for real-time targeting applications.

Problem, Solution, Benefit FY05 Sensor Web IRAD

Problem:

 It is <u>desirable</u> for Aura's TES to make targeted measurements where Tropospheric O₃ or other pollutants & precursors or are predicted to be significant.

Solution:

 Implement atmospheric chemistry model to predict occurrence of O₃ or other pollutants and demonstrate model-driven targeting.

Model-driven targeted observations

Benefit:

 Closed-loop feedback of new measurements into model can reduce forecast error growth and improve model predictive skill.

Two principal objectives

- Use atmospheric chemistry model output to drive targeted TES measurements
- Identify and understand current Aura/TES operations;
 identify changes to accommodate Sensor Web ops concepts
 for future similar missions

Characterize

- Desired atmospheric chemistry model properties
- TES measurement properties and mission observation modes

- Identify available models for possible use and/or implementation
 - The Variable Grid Urban Airshed Model System (UAM-VR)
 - Models-3 Community Multiscale Air Quality (CMAQ) Modeling System (EPA, NOAA)
 - Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) Model (Georgia Tech/Goddard)
 - Goddard Earth Observing System (GEOS) Chemistry Model (GEOS-CHEM)(Harvard University)

Approach - continued

- Characterize available models relative to:
 - Global vs. regional scale and available grid size(s)
 - Maturity and use by scientific community (NASA, NOAA, EPA, ...)
 - Run-time environment requirements & performance metrics
 - Initialization and external data inputs
 - Content & format of gridded output variables
 - Need for ancillary meteorological and/or emissions models
- Develop scenario and ops concept for using model output to drive dynamic, targeted TES measurements
 - TES step-and-stare vs. TES transect measurement modes
 - Where to make measurements within predicted regions of interest?
 (e.g., high O₃, CO, NOX concentrations)

Approach - continued

Develop

- System design (hardware, software)
- Characterize interfaces to key external data sources and systems

Develop I&T plan

- Stand-alone model implementation and validation
- Spiral system development, integration, and test

Approach - continued

- Determine current Aura/TES mission/instrument planning and scheduling, and commanding processes
- Formulate alternative architecture that incorporates eventdriven and model-driven Sensor Web ops concepts into:
 - Future Aura/TES operations
 - Goddard mission & science instrument formulation processes
- Identify impact upon future ground-, space-, and communications segment infrastructure

Results, Status, Next Steps

- Status
 - Project kick-off Dec 7, 2004.
 - Characterizing candidate models and TES measurements
- Next steps
 - Select atmospheric chemistry model
 - Develop science scenario(s) for pollution "events"
 - Develop ops concept(s) for model-driven TES targeting
 - Mid-term review Spring 2005
- Demonstrate/present findings September 2005